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Simulating Urban Resilience: Disasters, Dynamics and 

(Synthetic) Data 

A. Yair Grinberger, Michal Lichter and Daniel Felsenstein 

 

Abstract An agent based (AB) simulation model of urban dynamics following a disaster is 

presented. Data disaggregation is used to generate 'synthetic' data with accurate socio-economic 

profiling. Entire synthetic populations are extrapolated at the building scale from survey data. This 

data is coupled with the AB model. The disaggregated starting population allows for the bottom-

up formulation of the behavior of an entire urban system. Agent's interaction with each other and 

with the environment leads to change in residence and workplace, land use and house prices. The 

case of a hypothetical earthquake in the Jerusalem CBD is presented as an illustrative example. 

Dynamics are simulated for a period up to 3 years, post-disaster. Outcomes are measured in terms 

of global resilience measures, effects on residential and non-residential capital stock and 

population dynamics. The visualization of the complex outputs is illustrated using dynamic web-

mapping. 
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1 Introduction 

Urban resilience is invariably conceptualized as a cities’ ability to ‘bounce back’, post-

disaster, to some pre-existing equilibrium (Campanella, 2008; Godschalk, 2003; Müller, 2011). 

This pre-shock state embodies spatial and temporal relationships, direct and indirect effects and 

short and long term process. Disentangling these in order to isolate those factors promoting urban 

resilience is particularly challenging. In addition, urban resileince is more than just the sum of the 

parts of its’ inhabitants’ individual resilience. While cities are agglomerations of individuals, they 

are also much more. For example, they represent the accumulation of rounds of fixed capital 

expressed in infrastructure and other hard investment. These are generally expressed in terms of 

stock variables (roads, buildings etc). In the event of a shock, resilience of stock will be expressed 

in static terms, for example by maintaining function (transport flows, energy provision, providing 

shelter) in the face of adverse conditions.  

However cities are also much more than accumulations of capital stock. They comprise 

complex network and flow systems such as input-output relations between producers and 

consumers, origin-destination traffic patterns and so on. These represent a dynamic and long term 

view of resilience that involves not just maintaining the existing state of the city but also recovering 

in order to reach a desired state. Flows of information, labour and capital have the ability to not 

just maintain current conditions but to change the urban growth trajectory by increasing 

productivity over the medium to long term . Dynamic resilience therefore contributes variable 

inputs to urban development and the more inputs are variable, the greater the likelihood of 

inefficient allocation of urban resources (Rose, 2009). 

This chapter presents a disagregated agent-based (AB) simulation model of urban 

resilience in the wake of a disaster. The activities of multiple agents create a computable system 

in which the actions of individual agents affect each other and the system as a whole. The result is 

a complex network of behavior patterns that could not have been predicted by simply aggregating 

individual agent behavior. The system can be simulated and subjected to various exogenous 

shocks. The motivation for the study is to show how a bottom-up simulation modeling approach 

combined with an initial population created from synthetic data at the building scale, can be used 

to aid urban rejuvenation in the aftermath of a disaster. We also illustrate how web-based 
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technology can be used for communicating these findings to planners, policy makers and the 

public. 

2 Agent-Based Modeling and Urban Disasters  

 Urban disasters occur randomly in time and space. They affect both individuals and the 

environments that they populate. Large scale disasters are generally not one-time disturbances but 

generate a series of sub-incidents such as aftershocks in the case of earthquakes or secondary 

contamination in the case of pandemics. These keep the disaster environment in state of flux. 

Individuals therefore operate in a randomly changing context. By 'agentizing' this environment 

(Axtell, 2000) and reducing its elements to autonomous programmable entities, it becomes 

amenable for management.  

Agent-based simulations have been applied in a variety of disaster contexts such as 

flooding, fires and earthquakes (Chen and Zhan, 2008; Crooks and Wise, 2013; Dawson et al., 

2011). The AB framework lends itself to these situations. A high level of agent heterogeneity can 

be programmed and applied differentially to the various stages of an urban disaster from mitigation 

and preparation through response and on to recovery. This yields a rich array of human behaviors. 

For example, AB models have been coupled with network models for simulating evacuation 

(Chen, et al., 2012). GIS tools and crowdsourced data has been combined with agent based 

modeling to assist with post disaster recovery analysis (Crooks and Wise, 2013). Kwan and Lee 

(2005) merged network analysis, GIS and 3D visualization tools to provide a realtime micro-scale 

simulation tools for emergency response at the the individual building or city block level. In the 

field of traffic modeling, Chen and Zhan (2008) have used the AB approach to evaluate different 

evacuation strategies under different road network and population density regimes. The emergency 

response literature also uses AB modeling in urban contexts to provide a simulation capability for 

the public health and medical communities. This allows for the efficient management of medical 

and evacuation resources under conditions of severe uncertainty and stress .Invariably these 

systems use hybrid architecture that integrates a simulator with GIS, databases and rule based 

protocols for agents (Narzisi et al., 2006; Zimmerman et al 2010).  
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3 Method 

To account for the spatio-temporal dynamics of urban disasters we present an agent-based 

framework that is driven by synthetic spatial data (Figure 1). In this framework residential choice, 

workplace and activity location are determined bottom-up while land use and house prices are 

fixed top-down. As agents are inherently mobile, their behavioral response is articulated in varying 

temporal and spatial dimensions. While much of the data for observing agents behavior is only 

available at coarse administrative units, we use a GIS-based method for the accurate socio-

economic profiling of the population under such circumstances. This involves moving from a 

database describing only hundreds or thousands of spatial units to one containing records of 

millions of buildings and individuals over time. In the resultant spatial data, every individual in a 

city is synthetically represented by a single specific record. This database is input to an agent-

based model of urban disasters as the initial physical properties of the urban environment and the 

distribution of the units (Figure 1). Repast Simphony 2.0, an open source, Java-based programming 

platform, is used as the simulator (Crooks and Castle, 2012). Model outputs are delivered and 

visualized using the tools of web-GIS. 
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Fig. 1 Simulating Resilience: A General Framework 

 

The urban system is modeled as the outcome of interactions between agents and the 

environment (Fig 1). In this section we describe the mechanics of the agent-based procedures that 

give the database a dynamic, multi-dimensional nature. These mechanics rely on (necessary) 

simplifying assumptions. While this limits realism, it is required for modeling an agent-rich 

environment. To increase the validity of results, the model’s mechanics are ‘structurally 

stochastic’, as the random preference element allows behavior to vary in relation to the basic 

behavioral structure (Reichert and Mieleitner, 2009). While the assumptions we make are not 

ungrounded, the stochastic element diminishes possible diversion from realistic behavior, given 

the large number of agents in our model. Common validation processes (such as backstacking) are 

inapplicable in the case of long-term effects. Hence the need for a solid base for the mechanics of 

the model.  
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3.1 Behavior of Agents 

Citizen agents are organized at two levels – as individuals and clustered into households. 

Each agent embodies both socio-economic and spatial properties. Residential decisions are made 

at the household level while activities and workplace location decisions are executed by 

individuals. Agent behavior is not ad hoc but grounded in standard behavioral principles of utility 

maximization and risk evasiveness (Lancaster, 1966), satisficing (Simon, 1952), preferences for 

scale in economic activity (Fujita and Thisse, 2002) and segregative residential choice (Schelling, 

1971). Residential and activity location decisions are guided by a search process grounded in 

‘satisficing’ behavior. In this process the first location found to satisfy a set of constraints and a 

utility threshold that represents preferences, is chosen. This threshold is randomly drawn for each 

agent from the range [0,1]. 

3.1.1 Place of residence 

At any given moment, a household may decide to relocate or to move out of the city. In 

most cases this choice is probabilistic and dependent upon exogenous probabilities for out-

migration/relocation. In exceptional cases a household is forced out of home due to land-use 

dynamics such as residential use becoming commercial or due to the direct destruction resulting 

from the disaster. In this case the choice between relocation and out-migration is entirely random. 

The choice of new place of residence (Eq 1) is guided by two elements: the affordability of a 

dwelling and its attractiveness (Chen et al., 2012). These are evaluated in relation to the 

household’s willingness to allocate up to one third of monthly income to housing (a budget 

constraint) and preference for residential segregation represented by limited tolerance to change 

in living environment: 
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where: 

hh is the new residential location for household h randomly drawn from a choice set that 

includes all vacant buildings and partially occupied residential buildings, 

jb is the building considered, 
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 is a binary expression with value of 1 if true and 0 otherwise, 

hI is household h's monthly income, 

jHP is monthly housing cost of an average housing unit in building j, 

hk is the tolerance level for household h, 

  is the standard normal cumulative probability function, 

jI ,
jA  are the average household income and average age of individuals in building j, 

respectively 

hI , hA are average household income and average age of individuals in residential 

buildings within 100 meter of current residential location of household h, 

h
I ,

h
A  are standard deviations of household income and of resident age in residential 

buildings within 100 meters from current home location of household h, respectively. 

 

A random-order  search process is initiated whenever a household relocates or when a new 

household migrates into the city. The volume of in-migration is proportional to the number of 

vacant dwelling spaces and to an exogenous ratio of in-migration to out-migration. The search 

process is terminated if 100 iterations do not lead to relocation. In this case the household (whether 

in-migrant or native) leaves the city. If the conditions for relocation are fulfilled, the dwelling unit 

is removed from the set of vacant units. 

 

3.1.2 Workplace location 

Location of workplace is related to land-use as each employment sector is associated with 

a particular use (e.g. commercial, industrial, governmental etc). Apart from this constraint, 

locational choice (Eq 2) is dependent on distance-minimizing and preference for scale 

(representing more opportunities): 
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where: 

iWP is the workplace location of individual i, 

iELU is the employment-sector-related land-use for individual i, 

ik  is the preferences index, 

ijD is the distance between building j and individual i's place of residence, 
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iDmax is the distance of the building within the study area furthest away from individual 

i's place of residence. 

 

Workplace is not part of the initial database and agents are assigned to locations within the 

model. These locations are assumed to be stable unless the building changes use. Only in such a 

case is the search for a new workplace initiated.  

3.1.3 Location of activities 

Each day an individual agent participates in a varying number of activities. This number is 

dependent on individual attributes promoting or inhibiting mobility and accessibility (e.g. age, car 

ownership, disability) as well as employment status and personal preferences: 

(3)           iiiiih
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where: 

iNAc is the number of activities for resident i, 

ik  is a preference index, 

hcar  is a binary variable equal to 1 if the household h owns a car and 0 otherwise, 

idis  is a binary variable equal to 1 if individual i is disabled and 0 otherwise, 

iage  is the age group of individual i, 

iemp  is a binary variable equal to 1 if i is employed and 0 otherwise, 

iloc  is a binary variable equal to 1 when i's workplace is located within the study area and 

0 otherwise, 

x indicates the nearest integer number to x, 

a is the average number of activities based on employment status; equals 2.5 for employed 

residents and 3 for non-employed. 

The number of activities thus ranges between 0 and 12. The location of each activity is set 

by distance from previous location (starting from home) minimizing preferences, risk evasive 

behavior and preferences for scale. Risk evasiveness is embodied in the tendency to avoid areas in 

which a large proportion of the buildings are vacant and volume of floor-space represents 

preferences for scale. 

(4) 
     1,,1  jiitjjit bAttkabba

 
where: 

ita , is the current location of individual i, 

ita ,1 is the next location of activity of individual i, 
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ik  is a randomly drawn number between [0,1] reflecting activity location preferences, 

 jbAtt  is the attractiveness score for building j, calculated as follows: 

(5) 
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where: 

jE is the number of unoccupied buildings within a 100 meter buffer of building j, 

jB is the number of buildings within a 100 meter buffer of building j, 

ijD is the distance of building j from the current location of individual i, 

iDmax is the distance of the building within the study area furthest away from the current 

location of individual i, 

jLU is the land-use of building j, 

nonRes is non-residential use, 

jFS is the floor-space volume of building j, 

maxFS is the floor-space volume of the largest non-residential building within the study 

area. 
 

3.2 Environmental Processes 

In most agent-based models the environment is a passive backdrop which changes only as 

a direct consequence of agents’ actions (for example, changes in resource levels due to 

consumption by agents). However many components of the urban environment while not pro-

active are at least reactive. For the sake of simplicity these are not modeled individually but in 

aggregate they are treated as components of environmental sensitivity. Individual spatial elements 

such as census tracts, buildings and dwelling units are characterized as quasi-agents. These are not 

autonomous or mobile but are sensitive to environmental changes. This mechanism operates top-

down as the effects of aggregate trends trickle down to the level of individual quasi-agents. We 

employ this mechanism in the areas of land-use dynamics and housing prices. 

3.2.1 Commercial Land-Use Dynamics 

In the context of these dynamics, we enlist three assumptions. First, revenue levels required 

by a commercial function in order to be profitable are proportional to its floor-space volume. 

Second, actual revenues at a location are proportional to local flows of customers and third, flows 



10 
 

are proportional to the traffic loads1 in the vicinity of the function. This set of assumptions allows 

for formalizing the (logistic) probability of land-use change (Eq 6) as related to the congruence 

between floor-space volume and traffic loads at a location (Eq 7). This congruence is formalized 

as the difference in the relative position within an exponential distribution (Eq 8), thus represents 

demand or supply surplus: 

(6) 
 

tj

tj

x

x

tjtj
e

e
xP

,

,

1
,, 






 

(7) FS

FSTR

tj
z

zz
x

tttj ,,

,




 

(8)  tmedttjt

jt

yy

ty eez






ˆˆ

,

,

ˆ  

where: 

tjP , is the probability of land-use change for building j at time t, 

tj
x

,
  is the relative difference in standardized values for traffic load and floor-space for 

building j at time t. 

tjyz
,

 is the standardized value y (in relation to the median value 
tmedy ) for building j at 

time t drawn from the exponential distribution  tExpy ̂~ , 
y

t
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Traffic loads are calculated as the average daily load (citizens per meter) on roads within 

100m radius for the building at the preceding 30 days. P values of 0.99 and above are set to 

represent a demand surplus. For such values residential or vacant buildings become commercial 

functions. In such a case, any residents in the location relocate according to principles discussed 

in section 3.1.1. Values within the range [P(1)-0.01,P(1)] are used to identify supply surplus, or 

unprofitability, which results in commercial buildings becoming vacant. Such formalization and 

critical values limit the sensitivity of large commercial functions and small residential uses, thus 

eliminating a possible bias for changing initial uses in these cases. 

 

                                                           
1 We do not employ a shortest-path algorithm for movement routes but use a computationally less-demanding model 

where agents move  at each step  to the not-already-visited node closest to the destination (in aerial distance; loops are 

removed from the path). This also represents satisficing behavior. 
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3.2.2 Dynamic House Pricing  

Housing decisions (Section 3.1.1) are made in relation to prices. These prices represent 

demand, supply and the locational (dis)advantages of a specific dwelling unit (DU) and building. 

In order to capture the unique contribution of such market-level dynamics to the value of the 

individual unit we formalize a three-stage mechanism. Within this mechanism the effects of global 

changes trickle down from the census-tract (CT) level to the building and DU level. Average 

housing values per meter in CTs (Eq 9) change daily with changes to supply, demand and 

accessibility to services (supply of non-residential functions) within them. These prices set the 

value of individual buildings, along with local accessibility levels (Eq 10). Assuming equal size 

for all DUs within a building, the monthly cost of housing is derived in relation to the average 

willingness to pay in the population (Eq 11). Changes to commercial values are the result of a 

similar simpler process which is dependent on supply only and ends at the building level (see Eq 

10 and Eq 11): 
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where: 

tCTAV ,  is average value (commercial or housing prices) per meter in CT at time t, 

tCTpop ,  is population in CT at time t, 

tCTres ,  is the number of residential buildings in CT at time t, 

tCTsn ,Re  is the number of non-residential buildings in CT at time t, 

 sLU Re is a binary expression which is true (equals 1) if AV relates to housing prices 

and 0 otherwise. 
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where: 

tjV ,  is the house price of a dwelling unit in building j at time t, 
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tsSL , is the service level within area s at time t – the ratio of non-residential buildings to 

residential buildings in this perimeter. 

(11) 
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where: 

tDUP , is the monthly cost of living in dwelling unit DU at time t, 

tI is the average household income in the study area at time t, 

Ap#  is the number of DUs within a building. If the building is initially residential, this is 

equal to its initial population size. Otherwise it is the floor-space volume of the building 

divided by 90 (the average DU size in meters), 

tL  is the number of residential buildings in the study area at time t, 

t
P  is the standard deviation of DU prices within the study area at time t, 

c is a constant. 
 

4. Context and Data 

The simulation involves a hypothetical earthquake in the CBD of Jerusalem. While the 

CBD lies in a relatively stable seismic area, the city itself is located only 30 km east of the active 

Dead Sea Fault Line. Moreover, the majority of the buildings in the city center were constructed 

prior to the institution of seismic-mitigation building regulations, hence they are prone to damage 

(Salamon et al., 2010). This study area covers 1.45 sq km and includes two major commercial 

spaces: the Mahaneh Yehuda enclosed street market and the CBD (see Figure 2). The 

heterogeneous mix of land uses is represented by residential buildings (243Th sqm, 717 structures 

and 22,243 inhabitants), commercial buildings (505Th sqm, 119 structures) and 

government/public use buildings (420Th sqm, 179 structures). Three major transportation arteries 

traverse the area and generate heavy traffic volumes: Agripas and Jaffa (light railway route) Streets 

run north-west to the south-east and King George Street runs north-south. 
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The available data on buildings and population in the study area is aggregate data provided 

at the level of the Statistical Areas (SA)2. The data drives the model at three different spatial 

resolutions: buildings, households and individuals. The variables used to populate the buildings 

can be grouped into three categories and are defined in Table 1: 

 Building level: land-use, floor-space, number of floors, building value, households. 

 Household level: inhabitants, earnings, car ownership. 

 Individual level: Household membership, disability, participation in the work force, 

employment sector, age, workplace location. 

Table 1 Variables used in the model 

We use a GIS buildings layer to provide the distribution of all buildings nationally with 

their inherit attributes such as aerial footprint, height and primary land use. These attributes are 

utilized to calculate the floor-space of each building. We then calculate the value of buildings 

                                                           
2 A statistical area (SA) is a uniform administrative spatial unit defined by the Israeli Central Bureau of Statistics 

(CBS). It corresponds to a census tract and has a relatively homogenous population of roughly 3,000 persons.  

Variable Source Spatial unit 

Residential building Value per m2 National Tax authority 2008-2013  SA 

Non-residential plant and 

machinery value 

Local authorities financial data 

(CBS) (Beenstock et al., 2011) 

Local authority 

Number of households CBS 2008 SA 

Number of inhabitants CBS 2008 SA 

Average monthly household 

earnings 

National Insurance Institute, annual 

data 

Local authority 

Labor force participation  CBS 2008 SA 

Employment by sector CBS 2008 SA 

Percent disabled CBS SA 

Age CBS SA 

Workplace location GPS survey 2014 survey of  

individuals 
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according to their land use and floor space. Inhabitants socio-economic attributes are 

proportionally allocated to each building, using a methodology described in Lichter and 

Felsenstein (2012). The disaggregated building level data serves as the basis for the further 

disaggregation at the level of the individual. This begins with assigning each individual in the 

database a unique id, so that it is represented as a unique separate entity tied to a building in the 

database. Next, each person is allocated a random point location (a lat, lon coordinate) within the 

building with which it is associated. Demographic attributes (labor force participation, 

employment sector, disabilities and age group), assigned to buildings in the previous stage, are 

allocated to each individual so that they comprise the entire distribution in the building. Individuals 

are then clustered into households according to the household size (number of persons) in each 

building. Households are also represented as unique entities in the database and are associated with 

buildings. The clustering introduces heterogeneity in terms of the age distribution to closely 

represent a “traditional family household” having both adults and children when these are present 

in the building. A household entity represents the sum or average of the attributes of its members 

and is further assigned attributes such as earnings and car ownership in the same way these were 

assigned to individuals. The distribution of work locations of inhabitants by employment sector is 

derived from a GPS-based transport survey carried by the Jerusalem Transport Master Plan Team 

(Oliveira et al., 2011). We use this data to create a distribution of inhabitants working within and 

outside the study area, by sector of employment. 

4.1 Case Study Specifications 

The impact of the earthquake is modeled here as a one-time shock diffusing from a focal 

point. The effects of this shock result in physical damage to buildings and the road network. The 

probability that a building will collapse is proportional to its height and distance from the epicenter 

(Carenno et al., 2012) and is compared to a randomly-generated physical resilience score: 

(12)  
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where: 

jR is the resilience score for building j,  

c is a constant,  
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mag is the earthquake magnitude (similar to the Richter scale),  

jD is distance of building j from the earthquake epicenter, 

jF is number of floors in building j. 

Every building that collapses becomes vacant and unusable. All residents choose between 

migrating and relocating (see Section 3.1.1). A collapsed building blocks the closest road. 

Buildings are restored to pre-shock size and the duration required for this recovery (and the 

attendant re-opening of the blocked road) is proportional to floor-space (Carenno et al., 2012). 

Upon restoration, the building does not automatically retain pre-shock use.  

The earthquake is simulated 25 times3 with its epicenter randomly located in order to avoid 

location-based bias in the results. Each simulation comprises 1000 iterations (ticks) where each 

tick represented one activity day of resident-agents. In each simulation, the earthquake occurs after 

50 iterations in order to let market dynamics kick-in and stabilize. The results below describe the 

averages of all simulations. 

5 Results 

The results presented below relate to both short and long term impacts. They differentiate 

between global impacts and their temporal and spatial distributions and between effects on 

population flows and housing stocks. 

5.1 Aggregate Patterns and Equilibrium 

Folke et al. (2002) conceptualize resilience as the ability of a system to reorganize itself 

following a change. This stresses the notion of moving beyond recovery to pre-shock state and 

attaining stability. The global indices of resilience presented below are constructed in this spirit. 

They quantitatively assess the tendency of a system to achieve a stable equilibrium. A system 

meets stability criteria if it registers consistent value levels over a consecutive period of days. 

Specifically, we relate to the difference between current value and the average value over the 

preceding 50 days. Attainment of equilibrium is defined as the earliest day (counting back from 

the end of the simulation) when the day-to-day change is not significant. Table 2 presents the 

                                                           
3 This arbitrary number was chosen in order to balance between computing loads and convergence of results. 
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frequencies of achieving equilibrium, along with average durations and final changes in value 

(final to pre-shock value ratio) for a variety of indicators. 

Table 2 Global resilience measures 

Parameter Variable 

Frequency of 

Equilibrium (out 

of 25 simulations) 

Average 

Duration to 

Achieve 

Equilibrium 

(days) 

Average Final 

Change (% of 

pre-shock 

value) 

Population 
Population 24 397 67.85 

Average Income 11 950 50.53 

Residential 

Stock 

Residential Stock Size (# 

buildings)  
25 332 88.34 

Average Residential 

Value 
22 677 96.12 

Non-

Residential 

Stock 

Non-Residential Stock 

Size (# buildings)  
23 670 142.43 

Average Non-Residential 

Value 
25 385 78.61 

The study area is resilient to the shock across most dimensions but not in the classical 

recovery sense of the term. Residential and non-residential capital stock both stabilize in terms of 

size (number of buildings) and value in the simulations but usually on values different to those 

existing under pre-shock conditions (the exception being average residential value). Population, 

the most mobile element in the model, does not show such stability. In the majority of cases (14/25, 

i.e. 56%), income presents a continuing change, while in the other cases equilibrium is achieved 

quite late. This suggests that in spite of population size stabilizing, migration flows keep on 

affecting the composition of population. 

The new situation of a larger, yet cheaper, non-residential capital stock is not fully 

explained by the decreasing value of non-residential stock, as stock size stabilizes long after 

values. Floor-space volume, which also affects values, may account for this trend as it decreases 

by 20% on average. Most of this decrease happens within 300 days of the shock and a negligible 

difference (0.56%) is registered between values at day 350 and day 1000, correlating with the time 

required for non-residential values to achieve equilibrium. Therefore, these values experience a 

large initial shock. The new non-residential functions that appear over time are smaller in terms of 

floor-space thereby not further affecting values. 
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Residential stock presents a mirror image with average values lagging behind size. Supply 

and demand (population size) dynamics do not temporally correlate with the recovery of average 

values. This suggests that these effects may be attributed to other elements in the housing price 

mechanism such as service levels (number of non-residential buildings). These stabilize just before 

residential values and floor-space volume. The latter increases by 12.7% on average. These two 

trends are sufficient to contain the effects of the sharp decrease in population thereby creating a 

recovery scenario in relation to housing values. 

5.2. Spatial and Temporal Distribution of Effects on Stocks 

As outlined in the previous section, the average post-shock picture is one of smaller and 

cheaper commercial functions along with slightly larger residential buildings. Yet inequalities in 

the distribution of these changes may exist, as some areas may enjoy/suffer their consequences 

more than others. Furthermore, these distributions may or may not be stable over time. Figure 2 

represents the distribution of land-use over these two dimensions. The unequal spatial pattern is 

evident as the propensity for new commercial functions to emerge is greater in the areas south-

west and north-east of the market. These new land uses tend to stabilize over time, as indicated by 

the diminishing vacancy rate. This phenomenon may be attributed to centripetal and centrifugal 

forces. The centrifugal force is set in motion by the physical damage of the earthquake blocking 

movement paths. In search of new routes, traffic patterns disperse from pre-shock state to the 

south-west and north-east4 (Figure 2, T=100). As traffic loads are the locus behind the spatial 

pattern of commercial uses (see Section 3.2.1), their dispersal increases the potential profitability 

of new locations, attracting new activities away from previous clusters. Yet, the new emerging 

functions exert a self-enhancing centripetal force through a cyclical process of influence: new 

functions attract more traffic, which increases their profitability and attracts more uses, which 

further attract traffic loads. This centripetal force continues to work long after the effects of the 

initial shock have subsided thus perpetuating some of the new traffic patterns even after blocked 

roads start to open up (T=250, T=1000).  

 

                                                           
4 This is also apparent in change to the average standard deviation of traffic loads (agents per meter). Over time, the 

average s.d. decreases by 73.58% in relation to pre-shock state, suggesting a more even dispersal of traffic loads. 
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Fig. 2 Spatial distribution of land-use change. Height represents the number of simulations in which land-

use change (colored) and vacancy (in grey) occurs. Building color indicates initial land-use: Residential 

(green), Commercial (blue), or Public (pink). Road heights represent average traffic load. Roads in red 

denote values above the average 

 

5.3. Spatial and Temporal Population Dynamics 

In order to characterize population flows we calculate a normalized weighted composite 

‘Social Vulnerability Index’ (SVI; see Lichter and Felsenstein, 2012) at the level of the building. 

The relative weights of the elements comprising the index reflect their contribution to aggregate 

socio-economic vulnerability. 

tbtbtbtbtb DsACrISVI ,,,,, 2.02.01.05.0 
 

where: 

tbI , is the average monthly income of households residing in building b at time t, 

tbCr , is the rate of car ownership of households residing in building b at time t, 

tbA , is the average age within households residing in building b at time t, 

tbDs , is the share of residents who suffer disability building b at time t. 
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Assessing the spatio-temporal distribution of population flows is achieved via a two-step 

procedure. First, we interpolate the individual SVI values of buildings onto a continuous surface5 

and then we calculate the Local Indicators of Spatial Autocorrelation6 (LISA; Anselin, 1995) for 

each cell. We do this at temporal intervals of 50 days. This procedure allows for identifying 

clustering and dispersal patterns over time. Figure 3 shows the significant clusters of similar values 

(high LISA values). 

Fig. 3 Spatio-temporal distribution of SVI. Purple indicates higher absolute SVI values, brown indicates 

lower. Height represents LISA values. Building color indicates land-use at time T in the majority of the 

simulations: Residential (green), Commercial (blue), or Public (pink) 

 

                                                           
5 We use an Inverse Distance Weighting procedure. The parameters used are: pixels of 10X10m, 100m search radius 

and 2nd order power function. 
6  Neighborhood is defined using a queen contingency matrix. 
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As in the case of land use, the results suggest the existence of a similar centripetal-

centrifugal tension for population flows. The shock breaks down the initial divide of a less 

vulnerable western cluster and a vulnerable eastern areas (T=50) into a pattern of clusters 

surrounded by areas of mixed population (T=150). The tendency of households to choose living 

environments that preserve previous conditions (see Section 3.1.1) acts as a centripetal force that 

makes pre-shock clusters more attractive. As the centrifugal effect of the shock is only temporary, 

clustering continues and the clusters grow and become more punctuated (T=250 and T=1000).  

In spite of these similarities, there is a subtle yet important difference between effects on 

flows and on stocks. While the dissolution of previous clusters into new agglomerations may be 

interpreted as a sign of recovery and efficiency in an economic system, in the social context this 

is not necessarily the case. This process of re-grouping may in fact exacerbate vulnerability as 

existing communal support systems may stop functioning. This is especially true in the case of 

vulnerable populations. As they are less mobile due to greater budget constraints, they are exposed 

to the effects of more resilient, in-migrant households. If such households are characterized by 

high tolerance to change, they can easily relocate to more vulnerable areas. By doing so they act 

as agglomeration nuclei, changing the nature of their environment and attracting more population 

similar to them. As social mixing increases, social cohesiveness of the neighborhood decays and 

its institutions break down. Vulnerable populations are thus faced with the choice of remaining 

with no support or migrating to ‘ghettos’.  

5.4 Interactive Web-GIS application for visualization of results 

As the simulation outputs are multi-dimensional and include vast amounts of information 

on urban dynamics both spatial and temporal, we use web-GIS to communicate the results. The 

complexity of outputs is hard to internalize or visualize in their entirety using traditional graphic 

representations. We develop a web-based application to allow interactive visualization and 

querying of the multi-dimensional output in an intuitive and user-friendly fashion. (see 

http://ccg.huji.ac.il/AgentBasedUrbanDisaster/index.html). The site serves solely as a 

visualization tool for pre generated results and not as a vehicle for distributing the model. Using a 

simple web browser, users can generate time lapse visualizations in the form of maps and charts 

without any previous knowledge in handling spatial data or using GIS. They can choose a variable 

of interest, visualize its change over space and time and create location-specific information. This 

http://ccg.huji.ac.il/AgentBasedUrbanDisaster/index.html
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interaction is facilitated by simply clicking on the map or the chart or using gauges such as buttons 

and sliders (Fig 4). When initiating such an event, a single click can trigger complex querying of 

the database in the background. This necessitates database design and construction in a way that 

allows for fast and efficient data extraction. We create a dedicated database for the output results 

of time series from the model simulation. This is achieved by using DB design that does not always 

follow strict design guidelines but rather contains some flat tables to enable lateral data charting, 

displayed in pop-ups, graphs and charts. The visualization includes time lapse representation of 

human mobility (household level), changes in passengers along roads, changes in building land 

use and value, household socio-economic change and so on.  

Fig. 4 Web-based querying and visualization application of selected variables on a dynamic web-

map (see http://ccg.huji.ac.il/AgentBasedUrbanDisaster/index.html) 

 

The web-mapping platform is Google Maps API. Middleware functionalities are added to 

the application based on JavaScript libraries and APIs. These functions interact with the web-

mapping platform to provide ancillary capabilities (Batty et al., 2010) such as time laps animation, 

action buttons, sliders, interactive graphs etc.  

6 Conclusions 

 The findings above have looked at urban resilience at both the metropolitan and local 

scales. With respect to the former, we observe that the resilience patterns of residential and non-

http://ccg.huji.ac.il/AgentBasedUrbanDisaster/index.html
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residential (commercial) capital stock are very different. Post-disaster, non-residential stock attains 

equilibrium based on a pattern of smaller, less expensive units, while the opposite holds for 

residential stock. Population levels stabilize much faster than incomes indicating demographic 

turnover and churning. At the local scale we look at the difference between the resilience of stock 

variables, exemplified by land use and that of flow variables, represented by a composite measure 

of social vulnerability. Our main finding is that in the advent of a shock, both stock and flow 

variables disperse and re-aggregate over time. However more resilient socio-economic groups 

cope better with dispersing and then re-clustering. Less resilient populations are more in need of 

community support systems and cannot rejuvenate quickly.  

To add further realism, future work will need to relax some of the strong behavioral 

assumptions underlying the model.  For example, the demand for housing is currently determined 

by affordability and attractiveness of the units on offer. This is a slightly mechanistic 

representation of a process that generally involves bidding, expectations and perceptions of 

opportunities. On the supply side, it would be useful to explicitly include the behavior of building 

contractors. At present, housing supply is driven by land use change and in particular by 

commercial land use becoming residential. Furthermore, migration behavior in the model is 

currently motivated by steady-state probabilities of movement augmented by the destruction of 

buildings. This results in mass flight followed by stabilization at a lower level equilibrium. We do 

not capture the psychological over-reaction of population movement identified in the literature 

(Stein et al 2010, Whitehead et al 2000). In this respect, our results may be downwardly-biased.  

If stronger populations have the resources to accommodate the negative impacts of a 

disaster, then urban resilience is thus as much about economic welfare as it is about engineering 

or morphology. From a socioeconomic perspective, it is not the magnitude of the disaster that is 

important but the ability to cope with its results. Vulnerable populations or communities can be 

disproportionately affected by unanticipated disasters which are more likely to push them into 

crisis relative to the general population. Much of this can only be detected at the micro level such 

as the household or building. This is often smoke-screened in studies dealing with aggregate city-

wide impacts. The use of highly disaggregated and accurately profiled data is thus critical in 

understanding urban resilience. 
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Two policy implications arise from the above findings. First, as an exogenous shock has 

no predetermined outcomes, a disaster may elicit wildly diverging responses in different urban 

environments. This has policy implications calling into question much of the popular literature 

advocating a ‘one size fits all’ approach to urban resilience (Prasad et al., 2009; UNISDR, 2012). 

While well intentioned, the standard check-list approach to promoting resilience may be 

misleading. Second, the dynamic simulation outcomes point to differential rates of recovery over 

time across the components of the urban system (for example residential and commercial capital 

stock). In an effort to 'get things done' in the aftermath of a disaster, public policy for urban 

recovery is often characterized by knee-jerk (over) reaction that involves time-compressing 

rebuilding and rejuvenation measures (Olshansky et al., 2012). The redevelopment opportunities 

for large scale urban change over a short period of time afforded by disaster, fail to recognize the 

existence of multiple and unstable urban equilibria resulting from different activities recovering at 

different rates. Urban resilience is as much about judiciously synchronizing recovery across the 

urban system as it is about getting cities to 'bounce back'.  
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